Functionality of natural killer cells from end-stage cancer patients exposed to coherent electromagnetic fields

Angelos Evangelou¹, Ioannis Toliopoulos^{1,2}, Christos Giotis^{1,3}, Apostolos Metsios¹, Ioannis Verginadis¹, Yannis Simos¹, Konstantinos Havelas¹, Georgios Hadziaivazis¹ & Spyridon Karkabounas¹

¹Laboratory of Physiology, Faculty of Medicine, University of Ioannina, Ioannina, Greece, ²Konstantinion Research Center of Molecular Medicine and Biotechnology, Thessaloniki, Greece, and ³Nephrology Clinic, General Hospital of Arta, Arta, Greece

The main objective of our study is to investigate whether an enhancement of the immune system in end-stage cancer patients is achieved by exposure to coherent electromagnetic fields. For this reason, 15 end-stage cancer patients were exposed at low intensity, coherent electromagnetic fields at radiofrequencies ranging from 600 kHz–729 Hz, for 8 h/day, 6 days/week for 4 weeks. NKs number and cytotoxicity of NK T-lymphocytes versus K562 cancer cell line were estimated by flow cytometry, before and after exposure. Data showed that the exposure of the end-stage cancer patients to the coherent electromagnetic fields resulted in a significant increase of the number and the cytotoxicity of the NK T-lymphocytes against cancer cells, in all patients. Exposure to coherent EMFs at radiofrequencies increases the number and cytotoxicity of NK T-lymphocytes, which may contribute to the improvement of cancer patients' status.

Keywords Natural killer cells, Flow cytometry, Coherent electromagnetic fields, Electromagnetic resonance

INTRODUCTION

Natural killer (NK) cells play an important role in integrating immune processes, constituting a first line of defence against various infections and malignancies (Reynolds and Ortaldo, 1987; Trinchieri, 1987; Cerwenka and Lanier, 2001). One possible mechanism may be that NK cells unlike cytotoxic T cells, do not recognize a specific antigen before their action and selectively kill target cells bearing low levels of Major Histocompatibility Complex (MHC) class I molecules on their surface (a non MHC-I restricted action). Activated NK cells produce IFN- γ which increases VCAM-1 (Vascular cell adhesion molecule-1) expression facilitating the binding of NK cells to their target cells (Cerwenka and Lanier, 2001; Kim et al., 2005). In case of malfunction of the NK cells, an essential imbalance in immune – tumor interactions occurs and neoplastic cells evade immune surveillance (De Pillis et al., 2005).

Electromagnetic fields (EMFs) have been widely studied for their effects on biological species including humans (Foster and Repacholi, 2004). Such EMF at the

Address correspondence to Spyridon Karkabounas, Department of Physiology, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece; E-mail: skarkabu@cc.uoi.gr

radiofrequency level (RF) are usually found in earth environment, coming from cosmic radiation and- or emitted by communication systems and other technologies. Humans and other species are therefore well adapted to radiofrequencies and is well documented that these low EMF are harmless for animals and humans, since they are at radiation levels below accepted guidelines (Challis, 2005). There are, however, quite a few data on the effects of EMF on various kinds of malignant cells in experimental animals and in humans, some of them referring to the application of electromagnetic resonance field's principles at radiofrequencies (Suss, 1997; Islamov et al., 2002). The main concept expressed so far referring to the effects of EMF on malignancies are: their intensity, frequency, and duration of application. Studies on the EMF anticancer effects in vitro are several and their methodology is well documented (Tofani et al., 2002; Rossi et al., 2007; Kirson et al., 2007; Colbert et al., 2009). It has been also shown that the cytostatic effects of the EMF on cancer cells are not related to their thermal effects, being temperature-independent (Han et al., 1998).

EMF at 1.95 MHz induced apoptosis in human epidermoid cancer cells (Garaglia et al., 2005). Low-intensity, intermediate frequency (100-300 KHz) alternating EMF induces growth inhibition of malignant tumors in mice (Kirson et al., 2004). Beneficial effects of RFs in cancer patients suffering from brain glioblastoma have been attributed to the hindering and the formation of the mitotic spindle of cancer cells. This is due to the effect of the electric field on the large dipole moments of the tubulin dimmers of the mitotic spindle (Kirson et al., 2007). We have also recently shown that coherent EMF at RF (of 10 kHz–120 kHz) exerts potent antiproliferating and apoptotic effects on malignant sarcoma cell lines, as well as on sarcoma-bearing Wistar rats (Karkabounas et al., 2006; Avdikos et al., 2007).

There is, however, no evidence whether coherent EMFs at RFs enhance the immune system of cancer patients. For this reason, the effects of exposure to coherent static EMFs at RFs on the number and the cytotoxicity of NK T-lymphocytes, in end-stage cancer patients were investigated.

MATERIALS AND METHODS

Patients

Fifteen end-stage cancer patients (5 males and 10 females), aged from 28–79 years, participated voluntarily in the study. All patients were fully informed for the protocol of the study and signed consent of participation. The protocol of the study was approved by the Research Committee of the University of Ioannina and by the National Ethical Committee (15217/3-3-2006). The procedures followed were also in accordance with the ethical standards on human experimentation of the Helsinki Declaration of 1975, as revised in 1983.

Patients had completed their chemotherapy, radiation, and/or adjuvant antioxidant treatment (ascorbic acid 200 mg/kg body wt/day, β -carotene 1.5 mg/kg body wt/day, α -tocopherol 15 mg/kg body wt/day and vanadium as supplement 0.1 mg/kg body wt/day in the form of vanadium-cysteine and/or vanadium-putrescine) (Kallistratos et al., 1994; Liasko et al., 1998) at least 4 weeks before participation to the study, according to protocols for patient eligibility requirements indicating that chemotherapy or irradiation has to be stopped at least 4 weeks before exposure of cancer patients to EMFs (Ronchetto et al., 2004). There is, however, evidence that antineoplastic chemotherapy can be safely combined with magnetic fields (Salvatore et al., 2003). Patients received no medications during the study. Type of malignancy and stage of cancer were confirmed by histology and CT or MRI. Blood biochemistry (urea, creatinine, glucose, SGOT/SGPT, AlP, γ GT, LDH, AFP, and CEA), haematological analysis (white, red blood cells, Hb, ESR and platelets),

and tumor markers (α -FP, CEA, Ca19-9) were also measured. Patients were required to have adequate bone marrow, renal, and liver function (Ronchetto et al., 2004). NK cells were also counted and NK cells cytotoxic activity versus K562 tumor cells was measured before and after the end of the study. A complete history was received and physical examination of each patient was performed before enrollment in the study. No female patient was pregnant. The basic clinical characteristics and treatment history of the patients enrolled in the study are shown in Table 1. As control group, we considered NKs number and function of the volunteers before treatment with EMFs. Furthermore, as control were used publications concerning NKs function in cancer patients treated with chemotherapy or radiation.

Devices used and plan of exposure to EMF

EMF measurements and static EMF exposure of patients were performed using the Multi Channel Dynamic Exciter 100 V1 (MCDE) and described in detail elsewhere (Karkabounas et al., 2006; Avdikos et al., 2007). The MCDE has been certified by the Greek Committee of Atomic Energy (EEAE) for its safe use in humans and animals (EEAE MIAEEII2, 15/11/2000) (Karabetsos, 2000). The measurement part of this device (Figure 1A) emits through electrodes the resonant radiofrequencies of healthy tissues, cells, and organs of humans or animals by a database and their response is recorded. The more the response is deviating from the emitted frequency (in Hz) the more significant is the impairment of the organ and other targets (cells or tissues) (Popp, 2003; Takeda et al., 2004). The database (Fig. 1B) of the measurement part of the device contains the resonant frequencies of various human tissues and organs obtained mainly by measurements of Magnetic Resonance Imaging devices which recorded the resonant frequencies of any physiological structure in the human body which deviates in pathological structures.

The apparatus provides a uniform whole body exposure of the patients to the EMF. Patients during treatment were comfortably sitting at room temperature in a Faraday Cage (Fig. 1C) to avoid interaction with external-environmental electromagnetic resonance, at a determined distance (approximately 1 m) from the dipole antenna of the device so that the resonant radiofrequencies (RF) emitted, to be absorbed according to different conductivities of the human tissues of each patient (Allen et al., 2003). All patients were exposed to EMF at RF (Table 2) for 8 h/day, 6 days/week for 4 weeks. The frequencies used in this study conducted by a sophisticated program via a PC based on an algorithm and aimed to "force" any deviating system or organ in the body to resonate to its normal frequencies. The low frequencies used for exposure of the patients (from 600 kHz-729 kHz) are considered in relation to their intensity harmless for human and animals.

Equipment and reagents for flow cytometry

The necessary apparatus included the following: pipettes with tips, water bath, CO_2 incubator at 37°C, digital thermometer, vortex mixer, hematocytometer chamber, cover slip or electronic counter, centrifuge with swinging buckets and 12x75 mm tube carriers (Beckton-Dickinson, USA), flow cytometer (argon-ion Laser) with 488 nm excitation wavelength (Beckton-Dickinson, USA), ice bath with cover, and disposable tubes of 15 and 50 ml.

The reagents included prestained and unstained K562 target cells (ATCC, USA), stored at -70° C, complete medium consisting of RPMI 1640 with addition of streptomycin (Gibko, USA), DNA staining solution (Sigma, USA), Isopaque-Ficoll solution (Sigma, USA), and sterile phosphate buffered saline (PBS, Gibko, USA).

Nr	Sex	Age	Type of Cancer	Metastases	Adjuvant treatment	Chemotherapy
-	Н	38	Ductal Cancer of the breast	Liver, lungs, lymph nodes, brain	Antioxidants, V-cys, V-putr	Paclitaxol
2	Ъ	52	Ductal Cancer of the breast	Liver, lungs, lymph nodes, brain	Antioxidants, V-cys, V-putr	Paclitaxol
ŝ	Ц	99	Ductal Cancer of the breast	Liver, lungs	Antioxidants	None
4	Ъ	75	Adenocarcinoma of the colon	Liver	Antioxidants	5-Fluoro-uracil
2	Н	62	Non Hodgkin's lymphoma	Multiple organs (thoracic, abdominal and	Antioxidants, V-cys, V-putr	None
				neck lymph nodes)		
9	н	28	Fibrosarcoma of quatrocipite muscle	Multiple lung metastases	V-cys, V-putr	None
2	Μ	36	Melanoma of the retina	Multiple brain metastases	Antioxidants, V-cys, V-putr	None
8	М	52	Adenocarcinoma of the lung	Multiple metastases in both lungs	Antioxidants, V-cys, V-putr,	Cis-platinum, taxol
6	Μ	68	Adenocarcinoma of the colon	Bones	Antioxidants, V-cys, V-putr	None
10	Μ	49	Non small cell carcinoma of lung	Bones	Antioxidants	Cis-platinum, taxol
11	Μ	55	Non Hodgkin's lymphoma	Thoracic, abdominal and neck lymph nodes	Antioxidants	None
12	F	52	Breast cancer, adenocarcinoma	Bones	None	Paclitaxol
13	н	20	Adenocarcinoma of the colon	None	Antioxidants, V-cys, V-putr	5-Fluoro-uracil
14	Ц	47	Adenocarcinoma of the ovary	Lungs	Antioxidants, V-cys, V-putr	Cis-platinum, taxol
15	ц	54	Breast cancer, adenocarcinoma	Lungs	Antioxidants	Paclitaxol

Å പ ഡി . Ę, Ę, . Š. ýs, • ÷

FIGURE 1. The Multi Channel Dynamic Exciter 100 V1 (MCDE). (A) Dipole antenna; (B) Pc's sophisticated program; (C) Faraday cage.

METHODOLOGY OF NK CYTOTOXICITY BY FLOW CYTOMETRY (FCA)

The basic principle of the quantification of the cytotoxic activity of NK cells with FCA is to discriminate between effector (NK cells) and target (cancer) cell populations. The cell line K562 (cryopreserved, obtained from American Type Culture Collection, Manassas, VA) is used as target cells prestained with green fluorescent membrane dye (Beckton-Dickinson, USA). The K562 cell line was derived from the blood of a patient with chronic myeloid leukemia in terminal blastic crisis, and represents the most sensitive target cell line for human NK cells (Kane et al., 1996). K562 cells lack MHC classes I and II antigens. After incubation of the effector and the target cells, a red fluorescent DNA dye (Sigma, USA) is added to label the target cells permeabilized by NK activity. This dve labels only cells with compromised plasma membranes. In this way, a clear separation between four cell populations can be obtained: live target cells, dead target cells, live effector cells, and dead effector cells. Thus, the actual ratio between effector and target cells (E:T) can be confirmed, but only events that appear to be positive after this analysis (dead and live targets cells) will have to be collected for the determination of the NK cytotoxic activity (Sorskaar et al., 1985; King and Radicchi-Mastroianni, 1996).

Methodology of estimation of the number of NK and NK T cells

In six falcon tubes 12 × 75 mm, 20 μ l of CD16, 56 monoclonal antibodies (Becton-Dickinson) were placed, respectively. Then, 100 μ l of whole blood was placed in EDTA/K3 tube and was set in concentration of 4,000 cells/ μ l up to 10,000 cells/ μ l

	9521 719012 726380	0032 719230 726601	0243 719442 726812	0455 719655 727024	0666 719867 727435	0878 720080 727548	1090 720301 727760	1302 720514 728071	1514 720725 728282	2026 721036 728604	3439 721247 728827	3658 721458	3888 722070	4072 722381	4290 722594	4514 722805	4827 723016	5040 723227	5051 703440	044071 TC70	5764 723651	5764 723651 6076 723852	5764 723651 6076 723852 6388 724063	5764 723651 6076 723852 6388 724063 6812 724274	5764 723851 6076 723852 6388 724063 6812 724274 7023 724686	2231 72341 5764 723651 6076 723852 6388 724063 6812 724274 7023 724686 7234 724907	2201 72011 5764 723851 6076 723852 6388 724063 6812 724274 7023 724686 7234 724907 7745 725118	2201 72011 5764 723651 6076 723852 6812 724274 7023 72468 7234 724907 7745 725118 8056 725430	2531 723551 5764 723651 6307 723852 6318 724063 6812 724274 7023 724686 7023 724686 7234 724907 7745 725118 8056 725430 8368 725643
	700050 705	700261 710	700573 710	700884 710	701105 710	701317 710	701530 711	701732 711	702043 711	702254 712	702566 715	702878 715	703091 715	703502 714	703715 714	704027 714	705039 714	705351 715		705562 715	705562 715 705773 715	705562 715 705773 715 706084 716	705562 715 705773 715 706084 716 706405 716	705562 715 705773 715 706084 716 706405 716 706616 716	705562 715 705773 715 706084 716 706405 716 706616 716 706828 715	705562 715 705773 715 706084 716 706405 716 706616 716 706828 715 707040 715	705562 715 705773 715 706084 716 706405 716 706616 716 706828 715 707040 715 707351 715	705562 715 705773 715 706084 716 706405 716 706616 716 706828 717 707040 717 707351 717 707351 717	705562 715 705773 715 706084 716 706405 716 706616 716 706828 717 707840 717 707351 717 707351 717 707863 718
	688762	689073	689285	689496	689739	690050	690261	690472	691204	691416	691628	691840	692051	692673	693085	693411	693832	694044	20102	024200	695177 695177	695177 695820 695820	034300 695177 695820 697532	034303 695177 695820 697532 697844	695177 695177 695820 697532 697844 698146	094500 695177 695820 697532 697532 698146 698146 698459	094500 695177 695820 697532 697844 698146 698459 698780	695177 695177 695820 697844 698146 698146 698459 698780 699102	695177 695177 695820 697532 697844 698146 698459 698459 698780 699102 699333
(I	680230	680752	681064	681275	681587	681809	682022	682324	682756	683067	683280	683502	683714	684025	684237	684770	685081	685302	685514	**>>>>>	685826	685826 686038	685826 686038 686350 686350	685826 686038 686350 686350 686561	685826 686038 686350 686350 686561 686873	685826 686338 686350 686561 686561 686873 68738	685826 686038 686350 686561 686873 68738 687084 687084	685826 686038 686330 686350 686561 686873 687084 687405 687405 687405 6877616	686350 686350 686350 686561 686561 686561 68673 687782 687405 687405 6877828
	673321	673632	673843	673956	674067	674380	674602	674813	675025	675237	675448	675660	675871	676082	676303	676514	676725	677036	677250		677461	677461 677672	677461 677672 677883	677461 677672 677883 678104	677461 677672 677883 678104 678104	677461 677672 677883 678104 678626 678838	677461 677672 677883 678104 678626 678838 678838 679050	677461 677672 677883 678104 678104 678626 678838 678838 679050 679261	677461 677672 677883 678104 678838 678838 678838 678838 678838 679050 679261 679261
	665378	665710	666022	666344	666556	666868	667180	667402	667614	667726	668038	668460	669071	669303	669615	669827	670040	670242	670454		670665	670665 670877	670665 670877 671088	670665 670877 671088 671310	670665 670877 671088 671310 671521	670665 670877 671088 671310 671521 671733	670665 670877 671088 671310 671521 671733 672044	670665 670877 671088 671310 671521 671733 671733 672044	670665 670877 671310 671310 671521 671733 671733 672275 672275 672477
1	657908	658121	658443	658774	659086	659620	659832	660054	660266	660478	660680	660902	661114	661325	661538	661750	662061	662273	662505		11/700	663029	663029 663029 663241	002/1/ 663029 663241 663452	002/1/ 66329 663241 663452 663673	662/1/ 663029 663241 663452 663452 663673 663885	002/11/ 663029 663241 663452 663885 663885 664097	002/11/ 663029 663241 663452 663452 663885 664097 664497 664410	663241 663241 663241 663452 663673 663855 664097 664410 664410
	648615	649026	649448	650060	650483	650905	651228	651560	652072	652385	652708	653020	653333	653550	653763	654075	654306	654518	654830	655042	750000	655354	655354 655666	655354 655666 655979	655354 655666 655979 656190	655354 6555666 655979 656190 656402	655354 655366 655979 656190 656140 656614	655354 655366 655666 655979 656190 656402 656614 656614	655354 655354 6555979 6556190 656190 656614 657030 657252
	641480	641701	642012	642224	642435	642646	642859	643070	643302	643513	643725	644036	644250	644582	644793	645105	645317	645530	645742	646053		646285	646285 646497	646285 646497 646710	646285 646497 646710 64702	646285 646497 646710 647021 647232	646285 646497 646710 647021 647232 647232	646497 646497 646710 647021 647232 647456 647456	646285 646497 646710 64710 647231 647232 647232 647768 647756 6477880
	634652	634864	635075	635287	635510	635721	636033	636245	636457	636669	637000	637222	637434	637646	637857	638059	638280	638631	638726	639038		639250	639250 639461	639250 639461 639673	639250 639461 639673 639885	639250 639461 639673 639885 640097	639250 639461 639673 639885 640097 640097	639250 639461 639673 639885 640097 640320 640532	639250 639461 639673 639885 640097 640320 640532 640743
	627320	627541	627753	628065	628307	628520	628732	629044	629366	629679	629890	630102	630313	630525	630736	631047	631258	631692	631904	632115		632327	632327 632538	632327 632538 632750	632327 632538 632750 633061	632327 632538 632750 633061 633273	632327 632538 632750 633061 633273 633273 633285	632327 632538 632538 632750 633061 633273 633485 633485 633707	632327 632538 632750 633061 633061 633273 633485 633485 633485 6334018
	620515	620726	621028	621250	621462	621674	621886	622108	622420	622632	622843	623054	623267	623480	623692	623903	624115	624327	624539	624750		625061	625061 625272	625061 625272 625485	625061 625272 625485 625706	625061 625272 625485 625706 625706	625061 625272 625485 625706 626017 626017 626229	625061 625272 625485 625706 625706 626017 626229 626442	625061 625272 625485 625706 626017 626017 626229 626442 626654
	613740	614052	614263	614475	614687	615108	615310	615521	615732	616043	616254	616465	616677	616889	617101	617312	617523	617734	618045	618257		618469	618469 618691	618469 618691 618903	$\begin{array}{c} 618469\\ 618691\\ 618903\\ 618903\\ 619014\end{array}$	618469 618691 618903 619014 619227	618469 618691 618903 619014 619227 619440	618469 618691 618903 619014 619227 619440 619651	618469 618691 618903 619014 619227 619440 619651 619862
	607020	607232	607544	607757	608080	608303	608514	608725	609036	609247	609460	609682	609903	610105	610317	610530	610742	610965	611177	611390		611601	611601 611823	611601 611823 612035	611601 611823 612035 612248	611601 611823 612035 612248 612248	611601 611823 612035 612248 612248 612460 612460	611601 611823 612035 612248 612248 612460 612671 61282	611601 611823 612035 612248 612248 612460 612460 61282 612882 613103
	600222	600444	600666	600881	601103	601314	601525	601736	602047	602250	602462	602674	602887	603110	603322	603534	603745	604056	604267	604480		604701	604701 604912	604701 604912 605123	604701 604912 605123 605336	604701 604912 605123 605336 605551	604701 604912 605123 605336 605351 605763	604701 604912 605123 605336 605551 605763 605763	604701 604912 605123 605336 605551 605763 606074 606285

TABLE 2 The 491 radiofrequencies used for emission (in Hz)

Copyright © Informa Healthcare USA, Inc.

Enhancement of NK Cells by Coherent EMFs 51

RIGHTSLINK

in each tube. Then mixed and incubated in dark room for 15 min in room temperature. In each tube 2 ml of lytic reagent was placed (dilution of reagent with distilled water in a ratio 1:10). Then, mixing and incubation is followed in dark and normal conditions. After 5 min of centrifugation of the tubes in 1,800 rpm per minute, the supernatant was discarded and 500 μ l PBS was added and measurement with the flow cytometer was taking place after mixing the contents of the tube.

Statistical analysis

Data are expressed as mean \pm S.D. The statistical significance between data means was determined by using paired-sample t-test. All statistical procedures were performed using SPSS ver. 16.0 (SPSS Inc. Chicago, Illinois, USA).

RESULTS

The leucocytes, platelets, and red blood cells count as well as blood biochemistry and body weight of the patients remained stable (data not shown). No side effects were recorded in the patients exposed to the EMFs.

All patients treated by EMF manifested an increase in total number of NK cells ranging from 1.1% (patient Nr 3 in Table 3) up to 351% (patient Nr 6, in Table 3). NK cytotoxicity was significantly increased at ratio of 12.5:1 in all patients, as well as in 7 out of 15 patients (46.7%) at ratio of 25:1 and 10 out of 15 (66.7%) at ratio 50:1 (Table 3).

The number of NK cells and NKT lympocytes also increased significantly after exposure of patients to the coherent EMFs at radiofrequencies (p < 0.001; Table 3).

No significant difference between hematological, biochemical parameters tumor markers, NK cells cytotoxic activity versus K562 tumor cells (ratio 25:1 and 50:1), before and after EMF at RF exposure, was observed. In contrast, NK cell number and NK cells cytotoxic activity versus K562 tumor cells at ratio 12.5:1 was significantly increased after EMF at RF exposure (p < 0.001).

DISCUSSION

Exposure of end-stage cancer patients to EMF at RF for 4 weeks resulted into a significant increase of the number of the NKs and NK T-lymphocytes in the group of the patients with an increase of NKs cytotoxicity in half of them. It is significant that NK cells were cytotoxic at low ratio such as 12.5:1, since at higher ratios they are nevertheless cytotoxic. In this small concentration, the faster immunomodulation of NKs functionality was proved because the more cytotoxic the NKs are in this concentration the more active and motile they are to face dangerous invaders.

The methodology of exposure to EMF, applied in the present study, has been previously shown by us, to exert significant anticancer effects either on malignant cell lines or in tumor-bearing experimental animals (Kane et al., 1996; Karkabounas et al., 2006). We approached end-stage cancer patients holistically trying to regulate all systems and functions. This is in accordance to findings indicating that cell population can be approached holistically on an entity regulated by a fully coherent biophoton field (Popp, 2009). Furthermore, there is evidence that a rational electromagnetic treatment appears to be the induction of conditions for soliton existence for maintaining the coherence of the system (Brizhik et al., 2009).

Recent studies indicate that EMFs applied on human body, through needle-like electrodes which are posed on selected body sites, may increase the activity of NKs. This phenomenon is related to the regulation of the expression of certain genes, TABLE 3 The number of NK, NK T cells and their cytotoxic activity in 15 end-stage cancer patients, before and after treatment with EMF at RF

Variation in

							Cytotc NK co	axicity ells bet	% of fore	Cytoto NK c	xicity ⁹ ells aft	% of er	Cytoto % of] cells a	dicity NK fiter	
			NKT cells			Variation % of total		auton			autour		II COUL		
No/Sex	Age	%NK	before treatment	%NK	NKT cells after treatment	NK cells after treatment	12.5:1	25:1	50:1	12.5:1	25:1	50:1	12.5:1	25:1	50:1
1/F	38	10.57	1.17	21.41	6.12	+134	26	48	89	32	28	72	←	\rightarrow	\rightarrow
2/F	52	6.16	5.54	10.16	20.43	+161	З	89	84	43	59	72	←	\rightarrow	\rightarrow
3/F	66	20.14	3.14	19.25	4.15	+1.1	IJ.	15	27	25	38	46		←	\leftarrow
4/F	75	2.48	3.45	5.45	6.78	+97	15	35	45	18	42	48	\leftarrow	←	←
5/F	79	3.55	1.50	8.60	3.50	+100	2	15	28	IJ	25	32	<i>←</i>	←	←
6/F	28	5.89	1.70	17.69	16.55	+351	16	43	38	32	39	79	←	\rightarrow	←
M/T	36	6.27	3.23	10.62	15.46	+174.5	24	49	06	32	39	62	Ļ	\rightarrow	\rightarrow
8/M	52	6.80	5.40	10.20	6.35	+36	25	46	68	35	52	72	\leftarrow	←	←
M/6	68	5.25	4.35	8.55	12.70	+121	18	45	70	28	32	85	\leftarrow	\rightarrow	←
10/M	49	15.29	2.45	16.80	4.60	+4,3	22	48	55	31	45	72	Ļ	\rightarrow	←
11/M	55	6.45	4.25	12.70	10.25	+124	12	32	45	25	57	73	\leftarrow	←	←
12/F	52	8.30	3.70	15.20	6.70	+119	15	36	49	20	38	55	Ļ	←	←
13/F	70	3.60	5.25	9.20	12.80	+122	2	19	39	25	32	48	←	←	←
14/F	47	6.70	3.60	14.55	10.25	+170	12	42	72	32	38	67	Ļ	\rightarrow	\rightarrow
15/F	54	5.95	3.45	17.36	8.58	+173	14	35	62	23	32	71	←	\rightarrow	\rightarrow
Mean	54.7	7.6	3.5	13.2	9.7		14.4	14.4	39.8	58.5	27.1	39.7			
S.D.	14.6	4.6	1.4	4.7	5.0		7.8	7.8	17.9	21.7	8.8	10.0			
F, femalé	; M, m	ale													

which are reported to play an important role in NK cell activation (Kim et al., 2005). EMF's are known to increase Ca^{2+} influx in cells (Ronchetto et al., 2004; Nadareĭshvili, 2006), and it has also shown that the influx of Ca^{2+} activates NKs (Kallistratos et al., 1994).

Exposure to EMF at RF has been shown to increase antioxidant system in lymphocytes in patients with rheumatoid arthritis (Islamov et al., 2002) exerting probably a non specific protection of NK T-lymphocytes. This is in consistent with our experimental data showing that plant antioxidants, such as resveratrol, enhance significantly NK T-lymphocytes' cytotoxicity against cancer cells.

Beneficial effects of RFs in cancer patients suffering from brain glioblastoma have been attributed to the hindering and the formation of the mitotic spindle of cancer cells. This is due to the effect of the electric field on the large dipole moments of the tubulin dimmers of the mitotic spindle (Kirson et al., 2007). In the present study, all the patients had already completed the ordinary therapeutical anticancer and adjuvant treatments and during their exposure period at the EMFs (10 kHz–120 kHz) they were drug free. Only occasionally, they used in small doses of analgesics (opioids such as Durogesic) and tranquilants (benzodiazepines such as lorazepam and bromazepam) as palliative treatment. All the patients' anticancer and adjuvant treatments were interrupted for at least 4 weeks before their exposure to the EMFs (Ronchetto et al., 2004).

As is well known, it is very difficult to estimate if the overall patients' improvement is a clear result of EMF action only. It is also possible that the observed improvement could be at least partly attributed to the previous action of the ordinary therapeutic schemes. Nevertheless, there is also the possibility of an interaction between chemotherapeutics and EMFs, as it is already known according to the literature (Rossi et al., 2007). Preliminary experiments in our laboratory show that very small concentrations of cytotoxic drugs can demonstrate a synergetic phenomenon with EMF action by increasing the rate of cancer cell death. Furthermore, it is important to emphasize that the observed patients' improvement started to reveal during the exposure period to EMF. Finally, the possibility of a placebo effect should not be underestimated.

No significant difference between hematological, biochemical parameters tumor markers, NK cells cytotoxic activity versus K562 tumor cells (ratio 25:1 and 50:1) before and after EMF at RF exposure was observed. In contrast, NK cell number and NK cells cytotoxic activity versus K562 tumor cells at ratio 12.5:1 was significantly different after EMF at RF exposure (p < 0.001). Thus, this result could be at least partly related to the patients' improvement.

Several studies have demonstrated improved survival rates after the transfer of activated killer cells into cancer patients. NK cell activities are consistently lower in people with a family history of cancer compared to individuals with a low familial incidence of cancer (Strayer et al., 1984). In different patients in follow up, a serial monitoring of NK cells activity and correction of their emerging abnormalities after administration of an oral NK cell activator, revealed increasing overall and disease-free survival rates as well as prevention of cancer occurrences in high risk groups (Ghoneum, 1998). Furthermore, there is also reported that NK activity is inversely related to the number of family members with cancer. An eleven year study of 2,196 women, revealed that women with a high NK cytotoxic activity (>51%) had approximately half the risk of cancer compared with those with a low NK cytotoxic activity (less than or equal to 34%) (Imai et al., 2000).

In conclusion, increase in number and cytotoxicity of NK cells which seems to be critical for the prolongation of the survival time and quality of life of end-stage cancer patients, and may contribute to the beneficial effects of EMF at RFs.

Electromagnetic Biology and Medicine

RIGHTSLINK()

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

REFERENCES

- Allen, S. J., Adair, E. R., Mylacraine, K. S., et al. (2003). Empirical and theoretical dosimetry in support of whole body resonant RF exposure in human volunteers. *Bioelectromagnetics* 24:502–509.
- Avdikos, A., Karkabounas, S., Metsios, A., et al. (2007). Anticancer effects on leiomyosarcoma-bearing Wistar rats after electromagnetic radiation of resonant radiofrequencies. *Hell. J. Nucl. Med.* 2:95–101.
- Brizhik, E. L., Del Giudice, E., Popp, F. A., et al. (2009). On the dynamics of self-organization in living organisms. *Electromagn. Biol. Med.* 28:28-40.
- Cerwenka, A., Lanier, L. L. (2001). Natural killer cells, viruses and cancer. Nat. Rev. Immunol. 1:41-49.
- Challis, L. J. (2005). Mechanisms for interaction between RF fields and biological tissue. *Bioelectromagnetics* Suppl 7:S98-S106.
- Colbert, A. P., Wahbeh, H., Harling, N., et al. (2009). Static magnetic field therapy: A critical review of treatment parameters. *Evid-Based Complement/Alternat. Med.* 6:133-139.
- De Pillis, L. G., Radunskaya, A. F., Wiseman, C. L. (2005). A validated mathematical model of cell-mediated immune response to tumor growth. *Cancer Res.* 65:7950–7958.
- Foster, K. R., Repacholi, M. H. (2004). Biological effects of radiofrequency fields: does modulation matter? *Rad. Res.* 162:219–225.
- Garaglia, M., Marra, M., Mancinelli, F., et al. (2005). Electromagnetic Fields at Mobile Phone Frequency Induce Apoptosis and Inactivation of the Multi-chaperone Complex in Human Epidermoid cancer cells. J. Cell. Physiol. 204:539–548.
- Ghoneum, M. (1998). Enhancement of human natural killer cell activity by modified arabinoxylane from rice bran. *Int. J. Immunotherapy* 14:89–99.
- Han, L., Lin, H., Head, M., et al. (1998). Application of magnetic fields induced heat shock protein 70 for presurgical cytoprotection. J. Cell. Biochem. 78:551–559.
- Imai, K., Matsuyama, S., Miyake, S., et al. (2000). Natural cytotoxic activity of peripheral-blood lymphocytes and cancer incidence: an 11-year follow-up study of a general population. *Lancet* 356: 1795–1799.
- Islamov, B. I., Balabanova, R. M., Funtikov, V. A., et al. (2002). Effects of bioresonance therapy on antioxidant system in lymphocytes in patients with rheumatoid arthritis. *Bull. Exp. Biol. Med.* 134: 248–250.
- Kallistratos, G., Evangelou, A., Agnantis, N., et al. (1994). Enhancement of the antineoplastic effect of anticarcinogens on benzo(a)pyzene-treated rats, in relation to their number and biological activity. *Cancer Lett.* 82:153-165.
- Kane, K. L., Ashton, F. A., Schmitz, J. L., et al. (1996). Determination of natural killer cell fraction by flow cytometry. *Clin. Diagn. Lab Immunol.* 3:295–300.
- Karabetsos, E. (2000). Measurements report of electromagnetic radiation levels emitted from the device Multi Channel Dynamic Exciter 100 v.1 *Report no EEAE: MIA EEII 2*, Democritos, Greece: Greek Atomic Energy Agency, 15.11
- Karkabounas, S., Havelas, K., Kostoula, O. K., et al. (2006). Effects of low intensity static electromagnetic radiofrequency fields on leiomyosarcoma and smooth muscle cell lines. *Hell. J. Nucl. Med.* 3:167–172.
- Kim, C. K., Choi, G. S., Oh, S. D., et al. (2005). Electroacupuncture up-regulates natural killer cell activity. Identification of genes altering their expressions in electroacupuncture induced up-regulation of natural killer cell activity. *J. Neuroimmunol.* 168:144–153.
- King, M. A., Radicchi-Mastroianni, M. A. (1996). Natural killer cells and CD56⁺ T cells in the blood of multiple myeloma patients: Analysis by 4-colour flow cytometry. *Commun. Clin. Cytom.* 26:121–124.
- Kirson, E. D., Dbaly, V., Tovarys, F., et al. (2007). Alternating electric fields arrest cell proliferation in animal tumor models and human brain tumors. Proc. Natl. Acad. Sci. USA 24:10152–10157.
- Kirson, E. D., Gurvich, Z., Schneiderman, R., et al. (2004). Disruption of cancer cell replication by alternating electric fields. *Cancer Res.* 64:3268–3295.
- Liasko, R., Kabanos, T. A., Karkabounas, S., et al. (1998). Beneficial effects of a vanadium complex with cysteine, administered at low doses on benzo[a]pyrene induced leiomyosarcomas in Wistar rats. *Anticancer Res.* 18(5a):3609–3613.
- Nadareišhvili, G. G. (2006). Influence of electromagnetic radiation of different ranges on the transmembrane transport of Na+, K+, and Ca2+ ions in normal and tumor cells. *Georgian Med. News* 134:104-106.
- Popp, F. A. (2003). Properties of biophotons and their theoretical implications. *Ind. J. Exper. Biol.* 41: 391-402.

RIGHTSLINK

- Popp, F. A. (2009). Cancer growth and its inhibition in terms of coherence. *Electromagn. Biol. Med.* 28: 53-60.
- Reynolds, C. W., Ortaldo, J. R. (1987). Natural killer activity: The definition of a function rather than a cell type. *Immunol. Today* 8:172–174.
- Ronchetto, F., Barone, D., Cintorino, M., et al. (2004). Extremely low frequency-modulated static magnetic fields to treat cancer: A pilot study on patients with advanced neoplasm to assess safety and acute toxicity. *Bioelectromagnetics* 25:563–571.
- Rossi, E., Corsetti, M. T., Sukkar, S., Poggi, C. (2007). Extremely low frequency electromagnetic fields prevents chemotherapy induced myelotoxicity. *Electromagn. Biol. Med.* 26:277–281.
- Salvatore, J. R., Harrington, J., Kummet, T. (2003). Phase I clinical study of a static magnetic field combined with anti-neoplastic chemotherapy in the treatment of human malignancy: initial safety and toxicity data. *Bioelectromagnetics* 24:524–527.
- Sorskaar, D., Lie, S. O., Forre, O. (1985). Natural killer cell activity of peripheral blood and bone marrow mononuclear cells from patients with childhood acute lymphoblastic leukemia. *Acta Paediatr. Scand.* 3:433-437.
- Strayer, D. R., Carter, W. A., Mayberry, S. D., et al. (1984). Low natural cytotoxicity of peripheral blood mononuclear cells in individuals with high familial incidences of cancer. *Cancer Res.* 44:370–374.
- Suss, S. (1997). Bioresonance therapy in treatment of allergies. Every person has its own vibration pattern. Fortshr. Med. 115:16–18.
- Takeda, M., Kobayashi, M., Takayama, M., et al. (2004). Biophoton detection as a novel technique for cancer imaging. *Cancer Sci.* 95:656-661.
- Tofani, S., Sintorino, M., Barone, D., et al. (2002). Increased mouse survival, tumor growth inhibition and decreased immunoreactive P53 after exposure to magnetic fields. *Bioelctromagnetics* 23:230–238.

Trinchieri, G. (1987). Biology of natural killer cells. Adv. Immunol. 47:187-376.

